• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Resistive RAM for Space Applications & the Impact of Scaling Access Circuitry

    Weeden-Wright, Stephanie LuAnn
    : https://etd.library.vanderbilt.edu/etd-11232014-203645
    http://hdl.handle.net/1803/14753
    : 2014-12-04

    Abstract

    Resistive random access memories (RRAM) have gained interest in recent years as a contender for the future of nonvolatile memory (NVM) due to their ease of integration into the CMOS process, for their scaling potential, the possibilities of which have yet to be fully realized, and for their robust radiation tolerance. To be used as a viable memory, RRAMs require a significant amount of additional CMOS-based circuitry. Recent work reported shows that single event effects in peripheral circuitry, in fact, dominate the single event response of a commercial RRAM embedded memory. However, the bulk of the work published on radiation effects in RRAM has focused on the response of the resistive element alone, particularly for TID and DD studies. This work considers the implication of the presence of access circuitry on TID and DD tolerance and the impact of variability on the efficacy of error rate predictions. Not accounting for variability in energy deposition results in drastic discrepancies for error rate predictions (nearly an order of magnitude) and will become increasingly important for highly scaled CMOS circuitry and subsequently the reliability of RRAMs. Despite the presence of an unhardened access transistor, RRAM memory cells were observed to be robust against TID and DD up to large total exposures. Radiation-induced degradation in the access transistor is likely to be a limiting factor for TID and DD effects, despite the highly robust RRAM memory element.
    Show full item record

    Files in this item

    Icon
    Name:
    WeedenWright_Dissertation_Fina ...
    Size:
    8.441Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy