Show simple item record

Data-driven Concrete Damage Diagnosis with Thermal Imaging and Vibration Testing

dc.contributor.advisorMahadevan, Sankaran
dc.creatorBao, Yanqing
dc.date.accessioned2020-03-02T17:05:19Z
dc.date.available2020-03-02T17:05:19Z
dc.date.created2020-03
dc.date.issued2020-03-02
dc.date.submittedMarch 2020
dc.identifier.urihttps://ir.vanderbilt.edu/xmlui/handle/1803/9856
dc.description.abstractThis dissertation work investigates data-driven approaches for concrete structures health monitoring by considering multiple monitoring techniques and quantifies the uncertainty in the diagnosis result of each method. First, the dissertation develops an interior damage diagnosis (detection, localization, and quantification) methodology with traditional image processing techniques using thermography data. Second, a two-stage damage diagnosis (detection and localization) methodology is proposed with innovative damage-sensitive features using time-series vibration data. The damage-sensitive features are based on singular value decomposition (SVD) and crest factor metric. Third, a feature automation and interior damage diagnosis methodology is developed using the deep convolutional neural network approach and transfer learning in problems with limited and small datasets. Finite element models are exploited to augment the dataset. A systematic parametric selection method for the finite element models is provided. All the proposed methodologies are tested and validated using datasets from experiments on concrete, which is a heterogeneous material. Specimens (damaged and undamaged) with different sizes (involving thin patio block samples and thick concrete block samples) are utilized during the experiments. The proposed methodologies provide promising performance with consistently high accuracy in diagnosis results on the datasets from various specimens. Within each of the methodologies, the reliability of the data-driven approach is assessed through uncertainty and robustness analyses using techniques such as global sensitivity analysis, Bayesian updating, Markov Chain Monte Carlo, and Monte Carlo dropout.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectdata-driven, structural health monitoring, machine learning, deep learning, vibration, thermography, singular value decomposition, concrete
dc.titleData-driven Concrete Damage Diagnosis with Thermal Imaging and Vibration Testing
dc.typeThesis
dc.date.updated2020-03-02T17:05:19Z
dc.type.materialtext
thesis.degree.namePhD
thesis.degree.levelDoctoral
thesis.degree.disciplineInterdisciplinary Studies: <Major>
thesis.degree.grantorVanderbilt University
dc.creator.orcid0000-0001-8886-1806


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record