Show simple item record

Actions of Cusp Forms on Holomorphic Discrete Series and Von Neumann Algebras

dc.contributor.advisorBisch, Dietmar
dc.contributor.advisorJones, Vaughan F.R.
dc.creatorYang, Jun 2021
dc.description.abstractA holomorphic discrete series representation $(L_{\pi},H_{\pi})$ of a connected semi-simple real Lie group $G$ is associated with an irreducible representation $(\pi,V_{\pi})$ of its maximal compact subgroup $K$. The underlying space $H_{\pi}$ can be realized as certain holomorphic $V_{\pi}$-valued functions on the bounded symmetric domain $\mathcal{D}\cong G/K$. By the Berezin quantization, we transfer $B(H_{\pi})$ into $\End(V_{\pi})$-valued functions on $\mathcal{D}$. For a lattice $\Gamma$ of $G$, we give the formula of a faithful normal tracial state on the commutant $L_{\pi}(\Gamma)'$ of the group von Neumann algebra $L_{\pi}(\Gamma)''$. We find the Toeplitz operators $T_\phi$'s with $\phi \in L^{\infty}(\Gamma\backslash\mathcal{D},\End(V_{\pi}))$ generate the entire commutant $L_{\pi}(\Gamma)'$: \begin{center} $\overline{\{T_f|f\in L^{\infty}(\Gamma\backslash\mathcal{D},\End(V_{\pi}))\}}^{\text{w.o.}}=L_{\pi}(\Gamma)'$. \end{center} For any cuspidal automorphic form $f$ defined on $G$ (or $\mathcal{D}$) for $\Gamma$, we find the associated Toeplitz-type operator $T_f$ intertwines the actions of $\Gamma$ on these square integrable representations. Hence the composite operator of the form $T_g^{*}T_f$ belongs to $L_\pi(\Gamma)'$. We prove \begin{center} $\overline{\langle\{\text{span}_{f,g} T_g^{*}T_f\}\otimes \End(V_{\pi})\rangle}^{\text{w.o.}}=L_\pi(\Gamma)'$, \end{center} where $f,g$ run through the cusp forms for $\Gamma$ of same types. If $\Gamma$ is an infinite conjugacy classes group, the cusp forms give a $\text{II}_1$ factor.
dc.subjectRepresentation Theory, Number Theory, Operator Algebras
dc.titleActions of Cusp Forms on Holomorphic Discrete Series and Von Neumann Algebras
dc.type.materialtext University Graduate School
dc.contributor.committeeChairBisch, Dietmar

Files in this item


This item appears in the following Collection(s)

Show simple item record