• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    The Role of KCC3 in Neuronal Homeostasis

    Flores, Bianca Rose
    0000-0001-8672-2706
    : http://hdl.handle.net/1803/15941
    : 2020-07-08

    Abstract

    A loss-of-function (LOF) the in the potassium chloride cotransporter-3, KCC3, results in hereditary sensorimotor neuropathy (HSMN) with Agenesis of the Corpus Callosum. Although, this disease is rare worldwide, HSMN/ACC is highly prevalent (~1 in 2000) in the Saguenay/Lac St. Jean region outside of Montréal, Québec. There are no current treatments for HSMN/ACC, but rather patients manage their pain through physical therapy and medication. LOF mouse models of KCC3 have accurately recapitulated the locomotor deficits and neuropathology observed in patients with HSMN/ACC. The body of dissertation work has sought to characterize the physiological relevance of KCC3 through three main ideas. First, we worked to characterize a gain-of-function (GOF) mouse model observed in one human patient that also exhibits HSMN but no ACC. Secondly, this work assessed the relevance of KCC3 and its role in cell volume in primary sensory neurons in all three genotypes: LOF, GOF, and wild-type. Finally, this dissertation has laid the foundational work to determine if KCC3 (SCL12A6) could be ever considered for gene therapy by temporally manipulating the expression of KCC3 in a separate mouse model. Ultimately, through this body of work we have demonstrated that KCC3 must exist in homeostatic range in order to function normally in neurons and prevent disease. Additionally, a disruption in KCC3 affects the ability of dorsal root ganglion (DRG) neurons to maintain and regulate their volume. Finally, our work indicates that function of KCC3 is critical during the developmental period, as deletion of KCC3 at postnatal days 20 or 60 did not lead to locomotor deficits.
    Show full item record

    Files in this item

    Icon
    Name:
    FLORES-DISSERTATION-2020.pdf
    Size:
    3.869Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy