• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Streptococcus agalactiae infection of gestational tissues induces innate immune responses including the release of placental macrophage extracellular traps

    Doster , Ryan Steven
    : https://etd.library.vanderbilt.edu/etd-12132018-144612
    http://hdl.handle.net/1803/15278
    : 2019-01-08

    Abstract

    Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is a common perinatal pathogen, and GBS vaginal colonization is a major risk factor for infection-related adverse pregnancy outcomes including preterm birth, chorioamnionitis, and neonatal sepsis. Despite the prevalence and impact of perinatal infections, knowledge gaps remain regarding mechanisms by which bacterial infections precipitate outcomes such as preterm birth and neonatal sepsis. This work investigates interactions between gestational tissues and bacterial pathogens that lead to adverse pregnancy outcomes. In an ex vivo model of chorioamnionitis using human fetal membrane tissues, GBS and perinatal pathogens, Escherichia coli and Staphylococcus aureus, form biofilms on the choriodecidual surface of membrane tissues, which were detected by scanning electron microscopy and Raman microspectroscopy. GBS was found to penetrate membrane tissue layers. In response infection, fetal membrane tissues release proinflammatory cytokines associated with intrauterine infection. GBS infection stimulated trafficking of leukocytes into gestational tissues in the ex vivo chorioamnionitis model and in an in vivo mouse model of ascending pregnancy infection. In response to ex vivo GBS infection, neutrophils and placental macrophages release extracellular traps composed of cellular DNA that are studded with proteases and antimicrobial proteins. Placental macrophage extracellular trap (MET) release occurred via a oxidative-burst dependent mechanism, and METs were identified in the ex vivo chorioamnionitis model, suggesting MET release occurs during chorioamnionitis. GBS infection of placental macrophages also resulted in release of matrix metalloproteinases that are associated with fetal membrane degradation. Placental macrophage responses may provide protection against invading bacterial pathogens through trapping and killing bacteria but may also release important mediators of fetal membrane extracellular matrix digestion that could potentially contribute to infection-related pathologies including preterm rupture of membrane and preterm birth. Cumulatively, this work identifies innate immune responses in gestational tissues to bacterial infection that contribute to pathways that culminate in adverse pregnancy outcomes.
    Show full item record

    Files in this item

    Icon
    Name:
    Doster.format.pdf
    Size:
    24.27Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy