• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Single-Event Effect Mitigation in Pipelined Analog-to-Digital Converters

    Olson, Brian David
    : https://etd.library.vanderbilt.edu/etd-12102010-152348
    http://hdl.handle.net/1803/15245
    : 2010-12-16

    Abstract

    Analog-to-digital converters (ADCs) are necessary circuits in many space, military, and medical circuit applications. Intelligence, surveillance, reconnaissance, and communication missions all require high performance ADCs. Speed, resolution, and power are concerns in high performance designs. Unlike commercial applications, space, military, and some medical electronics must also be able to function in a radiation environment. This additional complexity provides an interesting and needed area of research. The goal of this work is to understand single event effects (SEEs) in high-speed ADCs, so the impact of design topologies and mitigation techniques can be evaluated for Department of Defense (DOD) or commercial space deployment. This goal is broken into two parts. The first part characterizes and explains the single event effect response, and presents a novel method of evaluating SEEs in ADCs through the use of frequency domain analysis. The second part provides additional circuit design alternatives for hardening pipelined ADCs: the use of comparator triple modular redundancy or robust encoder logic in the front pipeline stages, dual-path hardening in switched-capacitor sub-circuits, and applying analog layout techniques to all transistors-pairs along the fully-differential signal path. The conclusion of this work helps designers achieve ADCs for the next generation applications, influence experimental testing methodologies, and applies to other high-speed mixed signal applications.
    Show full item record

    Files in this item

    Icon
    Name:
    OlsonPhDDissertation.pdf
    Size:
    6.991Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy