• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    RNAi studies in caenorhabditis elegans reveal that coenzyme Q protects GABA neurons from apoptotic, calcium-dependent degeneration

    Earls, Laurie Rebecca
    : https://etd.library.vanderbilt.edu/etd-12062007-140837
    http://hdl.handle.net/1803/15170
    : 2007-12-13

    Abstract

    Dissertation under the direction of Professor David M. Miller III Impairment of neurons expressing the neurotransmitter ?-amminobutyric acid (GABA) can result in psychiatric diseases as diverse as schizophrenia, epilepsy, Tourette’s syndrome, and autism. Degeneration of specific GABA neuron populations in the adult brain results in the symptoms of Huntington’s disease and Spinocerebellar ataxias. In order to better understand these neurons in development and aging, we performed RNAi studies in the nematode C. elegans to identify genes that are important for GABA neurons throughout the life cycle. We identified genes that affect movement and GABA neuron morphology. These RNAi targets included genes with no previously known neuronal function. Future studies of these genes should provide clues to the genetic specification of GABA neuron differentiation and function. During the course of these studies, we found that knockdown of the coq-1 enzyme resulted in the age-dependent degeneration of GABA neurons. coq-1 is the initial enzyme in the Coenzyme Q (CoQ) biosynthetic pathway. CoQ is a required component of the mitochondrial electron transport chain and essential for normal energy metabolism. CoQ deficiency in humans causes cerebellar ataxia, and myopathy, indicating that selected tissues are especially sensitive to reduced levels of CoQ. We found that RNAi or genetic ablation of coq-1 expression in C. elegans resulted in a progressive uncoordinated, or Unc, phenotype and degeneration of GABA neurons. Both the degenerative and Unc phenotypes emerge during late larval development and progress in adults. Neuron classes in motor and sensory circuits that utilize other neurotransmitters (dopamine, acetylcholine, glutamate, serotonin) and body muscle cells were unaffected morphologically by RNAi depletion of coq-1. The mechanism of GABA neuron cell death depends on release of intracellular calcium stores, and requires the apoptotic genes ced-3 (caspase) and ced-4 (Apaf-1). Additionally, degeneration requires drp-1, implicating mitochondrial fission machinery in the cell death pathway. We conclude that the neuron specificity and developmental progression of the coq-1 knockdown phenotype in C. elegans resembles that of CoQ deficiency in humans, and therefore may provide a useful model system for studies of this and related neurodegenerative diseases.
    Show full item record

    Files in this item

    Icon
    Name:
    Laurie_EarlsThesis.pdf
    Size:
    18.46Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy