• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    A drosophila model of cellular and molecular mechanisms of fragile x syndrome.

    Pan, Luyuan
    : https://etd.library.vanderbilt.edu/etd-12052007-214624
    http://hdl.handle.net/1803/15136
    : 2007-12-17

    Abstract

    Fragile X Syndrome (FXS) is the most common form of inherited mental retardation. In this thesis, I describe my work using a Drosophila model to study cellular, molecular and genetic mechanisms that underlie the cognitive dysfunction in FXS. First, I used the MARCM technique to generate clones of Drosophila fragile X mutant retardation 1 (dfmr1) mutant neurons within an otherwise wild-type brain. I focused on the Mushroom Body, a well-characterized brain region of learning and memory. The dfmr1 null mutant neurons display overgrowth and overbranching in cell bodies, dendrites and axons. Consistently, dfmr1 over-expression neurons results in simpler cellular architecture. These results indicate that dfmr1 is a negative regulator of neuronal architectural complexity. Second, using immunocytochemistry and confocal imaging fluorescence intensity quantification, I investigated the regulatory function of the dfmr1 protein (dFMRP) on ionotropic glutamate receptors (iGluR) at the Drosophila NMJ synapses, and the relationship between dFMRP function and Drosophila metabotropic glutamate receptor (DmGluRA) synaptic signaling. I found that dFMRP regulates two iGluR classes in opposite directions. In contrast, DmGluRA negatively regulates both iGluR classes in common. Double null mutants of dfmr1 and dmGluRA always display an additive effect of the two single mutant phenotypes, which suggests independent, convergent pathways between dFMRP and DmGluRA regulation. Thirdly, I examined mechanistic relationships between dFMRP and DmGluRA by assaying protein expression, behavior and neuron structure in both the brain and NMJ synapse; in single mutants, double mutants and with an mGluR antagonist. These results show that DmGluRA and dFMRP convergently regulate presynaptic properties. Taken together, my work has clarified the cellular function of dFMRP on neuronal and synaptic architecture, uncovered new molecular mechanisms showing that dFMRP regulates class-specific iGluR levels in synaptic terminals, and elucidated the mechanistic relationship between dFMRP function and DmGluRA signaling.
    Show full item record

    Files in this item

    Icon
    Name:
    thesis.pdf
    Size:
    3.357Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy