• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    The mechanism and physiological function of epidermal lipoxygenase-3

    Zheng, Yuxiang
    : https://etd.library.vanderbilt.edu/etd-12032010-001429
    http://hdl.handle.net/1803/15071
    : 2010-12-10

    Abstract

    The goal of my thesis research is to elucidate the catalytic mechanism and physiological function of the atypical mammalian lipoxygenase, epidermal lipoxygenase-3. Although named as a lipoxygenase based on sequence homology to other lipoxygenases, epidermal lipoxygenase-3 appears to be devoid of dioxygenase activity with natural polyunsaturated fatty acids and shows instead a prominent hydroperoxide isomerase activity with fatty acid hydroperoxides. Epidermal lipoxygenase-3, together with 12R-lipoxygenase, is implicated through genetics in skin barrier formation, yet the mechanism of action of these two lipoxygenases in the physiological setting is poorly understood. During my research I uncovered dioxygenase activity in epidermal lipoxygenase-3, elucidated its mechanism, and developed a novel model to explain the in vivo action of epidermal lipoxygenase-3 and 12R-lipoxygenase. The mechanistic study of eLOX3 led to a better understanding of the catalysis of epidermal lipoxygenase-3 and lipoxygenases in general, particularly regarding how lipoxygenase is activated by fatty acid hydroperoxides and the role of active site O2 in this activation process. The study on the physiological function of epidermal lipoxygenase-3 led to elucidation of a novel biochemical pathway whereby 12R-lipoxygenase and epidermal lipoxygenase-3 mediate at least part of the long-known and not well-understood effect of essential fatty acids on skin health by oxygenating linoleate-enriched ceramides and allowing subsequent hydrolysis and covalent coupling of the ceramides to proteins, thus providing an explanation for the skin barrier defects exhibited when the gene encoding either epidermal lipoxygenase-3 or 12R-lipoxygenase is deleted, or when essential fatty acids are excluded from the diet.
    Show full item record

    Files in this item

    Icon
    Name:
    Zheng_Dissertation_2010.pdf
    Size:
    5.275Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy