• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Random Forest Classification of Acute Coronary Syndrome

    VanHouten, Jacob Paul
    : https://etd.library.vanderbilt.edu/etd-12022013-152619
    http://hdl.handle.net/1803/15043
    : 2013-12-16

    Abstract

    Coronary artery disease (CAD) is the leading cause of death worldwide. Acute coronary syndromes (ACS), a subset of CAD, account for 1.4 million hospitalizations $165 billion in costs in the United States alone. A major challenge to the physician when diagnosing and treating patients with suspected ACS is that there is significant overlap between patients with and without ACS. There is a high cost to missing a diagnosis of ACS, but also a high cost to inappropriate treatment of patients without ACS. American College of Cardiology/American Heart Association guidelines recommend early risk stratification of patients to determine their likelihood of major adverse events, but many individual tests and prognostic indices lack sufficient performance characteristics for use in clinical practice. Prognostic indices specifically are often not representative of the population on which they are used and rely on complete and accurate data. We explored the use of state-of-the-art machine learning techniques random forest and elastic net on 23,576 records from the Synthetic Derivative to develop models with better performance characteristics than previously established prognostic indices in determining the risk of ACS for patients presenting with suspicious symptoms. We bootstrapped the process of model creation, and found that the random forest significantly outperformed elastic net, L2 regularized regression, and the previously-developed TIMI and GRACE scores. We also assessed the model calibration for the random forest and explored methods of correction. Our preliminary findings suggest that machine learning applied to noisy and largely missing data can still perform as well or better than previously developed scoring metrics.
    Show full item record

    Files in this item

    Icon
    Name:
    complete_masters_thesis_VanHou ...
    Size:
    1.375Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy