• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Investigation of CaMKII activation: a model of self-regulation

    Hoffman, Laurel R.
    : https://etd.library.vanderbilt.edu/etd-11302011-144712
    http://hdl.handle.net/1803/14910
    : 2011-12-08

    Abstract

    Presently we do not completely understand how memories are able to store, retain, and recall information and experiences. The investigation is just beginning and proteins key for the biochemical processes associated with memory are currently being identified and characterized. Calcium-calmodulin dependent protein kinase II (CaMKII) has been deemed one of these “memory molecules” because of the critical role it plays in memory and learning. Memories are thought to be encoded by synaptic strength modification and CaMKII has been shown to be critical for the normal regulation of synaptic transmission. CaMKII functions as a transducer of calcium (Ca2+) signaling by responding to the amplitude, duration, and frequency of Ca2+ transients. Autophosphorylation at Thr286 following binding of calcium-calmodulin (Ca2+/CaM) leads to a Ca2+-independent activity referred to as a conformational memory of prior activation. While CaM binding, autophosphorylation, and catalytic-regulatory domain autoinhibition have been linked to CaMKII function, the underlying structural and dynamic framework of activation and conformational memory is poorly understood. We utilized site-directed spin labeling and electron paramagnetic resonance (SDSL-EPR) to explore the conformational changes associated with CaMKII activation and conformational memory. The structure of the regulatory domain was investigated via spin label mobility under several conditions representing various intermediates of activation. Inter-domain movements were also examined through distance measurements between regulatory and catalytic domains. We found that CaMKII activation is associated with regulatory-catalytic domain disengagement, causing a disruption of autoinhibition and producing significant conformational changes which are propagated throughout the regulatory domain. Here we detail a mechanistic description of activation and are currently using EPR data to computationally model conformational changes associated with CaMKII activation.
    Show full item record

    Files in this item

    Icon
    Name:
    Hoffman_Dissertation.pdf
    Size:
    8.982Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy