• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    On Chip Characterization of Single Event Transient Pulse Widths

    Narasimham, Balaji
    : https://etd.library.vanderbilt.edu/etd-11302005-010732
    http://hdl.handle.net/1803/14887
    : 2005-12-13

    Abstract

    It is now well known to the radiation effects community that single event effects caused by energetic particles, particularly single event transients, will be among the dominant reliability issues in advanced integrated circuits. A single event upset is a static error in storage elements such as memory and is independent of clock frequency. Whereas single event transients are glitches that propagate through combinational logic elements and get stored as incorrect data. Such errors are dependent on both the clock frequency and the pulse width of the transient. Precise knowledge of particle-induced transient pulse widths is important to develop hardening techniques to mitigate the effects of these transients. However there have not been many efforts in the past to characterize these transients, primarily because they did not pose a great threat to reliability and/or did not contribute significantly to error rates in older technology devices. Also it has been very difficult to measure these transients accurately, as they occur on pico-second time scales. However, with decreasing feature sizes and increasing clock speeds, single event transients have already started to dominate soft error rates. This thesis presents a novel circuit technique to measure single event transients accurately. Laser test results are presented to validate this approach.
    Show full item record

    Files in this item

    Icon
    Name:
    Balaji_Narasimham_final.pdf
    Size:
    1.189Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy