• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Impact of Severity of Illness on Health State Transitions During Intensive Care Unit Admission: Application of Markov Multi-State Transition Modeling

    Sampson, Uchechukwu K. A.
    : https://etd.library.vanderbilt.edu/etd-11242014-084249
    http://hdl.handle.net/1803/14771
    : 2014-11-25

    Abstract

    There is insufficient understanding of the relationship between the severity of physiologic illness and the transitions in cognitive and functional health states of patients during the course of an intensive care unit (ICU) stay. To this end, the fundamental aim of this project was centered on developing a predictive model for state transitions during ICU admission in order to determine the relevance of indices of illness severity and other potentially modifiable risk factors that may inform clinical decision-making. The motivating data for this work was derived from the BRAIN-ICU (Bringing to Light the Risk Factors and Incidence of Neuropsychological Dysfunction in ICU Survivors) study. Five health transition states (normal, delirium, coma, death, and discharge) were considered in the parent study, as were clinical indices of illness severity such as the Sequential Organ Failure Assessment (SOFA) and the Acute Physiology And Chronic Health Evaluation (APACHE) scores. The transition states constitute multiple end points laden with scientific information that can be elucidated by sophisticated modeling approaches now afforded by the advent of advanced statistical computing. Since the current state of a patient may be related to his/her previous states, the BRAIN-ICU data was analyzed with accommodation for multiple outcome categories (the transition states) by relating state-transition probabilities to patient covariates and past states via a polytomous regression with Markov structure. This analysis strategy addressed competing risk explicitly by assessing the effect of previous states while evaluating the motivating question of the impact of severity of illness.
    Show full item record

    Files in this item

    Icon
    Name:
    MScBiostatisticsThesis_Sampson.pdf
    Size:
    614.4Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy