• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Novel Multilayered Magnetoplasmonic Nanoparticles for Theranostic Applications

    Bell, Charleson Sherard
    : https://etd.library.vanderbilt.edu/etd-11232015-151447
    http://hdl.handle.net/1803/14760
    : 2015-11-27

    Abstract

    With the advent of bionanotechnology, bioengineers utilize nanoscale tools to better characterize and modify biological processes in an effort to enhance medical applications. Most of these applications are single-purpose and utilize only a single property of the biofunctionalized nanomaterial. This work is focused on improvements in nanomaterial design, through variation in fabrication technique, that allow multiple characteristics and properties to be combined into a single, theranostic, nanoscale entity. Acinetobacter baumannii has emerged as a bacterial species of interest due to its significant virulence and enhanced persistence in combat and healthcare environments. Acinetobacter species cause a multitude of ailments which contribute to the incidence of bloodstream infections. The mortality rate associated with A. baumannii bacteremia is 52%. Treatment options are increasingly limited due to the rapid acquisition of multi-drug resistance to the few antibiotics readily available. Due to this, the development of a nanotechnology-mediated adjuvant treatment strategy for A. baumannii is paramount. As outlined in the chapters of this dissertation, novel, multilayered, magneto-metallodielectric multistrata nanoparticles which possess theranostic characteristics were developed (Chapter II). Thereafter, a synthesis strategy was implemented in order to enhance the magnetic properties of the composite material while decreasing the synthesis duration such that freshly synthesized materials could be rapidly utilized in a biological application (Chapter III). The central hypothesis of this dissertation was confirmed using superparamagnetic FeOx/Au core/shell nanoparticles that were used to magnetically capture, visualize and separate Acinetobacter baumannii using an antibiotic, polymyxin E, as the microbial targeting ligand (Chapter IV). Further development of core/shell nanotechnology will bolster the technological impact of biomedical applications thus improving the way we deliver medical care to patients across the globe and beyond.
    Show full item record

    Files in this item

    Icon
    Name:
    Bell.pdf
    Size:
    2.590Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy