• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Functional implications of electrophilic protein adducts

    Camarillo, Jeannie Marie
    : https://etd.library.vanderbilt.edu/etd-11172016-083939
    http://hdl.handle.net/1803/14578
    : 2016-11-17

    Abstract

    Oxidative stress is a contributing factor in a number of chronic diseases, including cancer, atherosclerosis, and neurodegenerative diseases. Lipid peroxidation that occurs during periods of oxidative stress and decomposition of these oxidized lipids results in the formation of lipid electrophiles. 4-Hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) are two lipid aldehydes which are generated as a result of lipid peroxidation, and both can adduct nucleophilic side chains of amino acids in proteins. A large number of protein targets have been identified for HNE and ONE, consisting of an array of adduct structures Here, we show that these adducts have distinct functional implications on the activity and regulation of the target protein. CDK2, a key cell cycle kinase which regulates the G1/S-phase transition, is adducted by HNE for up to 16 h. The adduction of CDK2 inhibits kinase activity in vitro and in cells and delays cell cycle progression into S-phase following HNE treatment. PIN1 is a cis/trans isomerase, which plays a key role in regulating of a number of cell signaling pathways. PIN1 is modified by 4-oxo-2-nonenal ONE at the active-site Cys and forms a cross-link with a nearby Lys, thereby inactivating the protein. Using site-specific incorporation of deuterium in ONE, we were able to determine a mechanism of cross-link formation and definitively show that nucleophilic attack occurs at the third carbon of ONE. Histone proteins have also been shown to be preferential targets for ONE modification, and these proteins have a direct effect on the regulation of gene expression and chromatin structure. We have developed a method to selectively isolate regions of DNA associated with these adducted histones using click-chemistry. The method, coupled with next generation DNA sequencing, termed Click-Seq, shows few regions of enrichment, suggesting that ONE broadly adducts chromatin. Furthermore, the levels of these adducts are two orders of magnitude lower than the canonical histone modifications. Together, these data show that the lipid electrophile HNE and ONE can have a significant impact on enzyme activity, alterations in cell signaling pathway, and regulation of gene expression.
    Show full item record

    Files in this item

    Icon
    Name:
    Camarillo_Dissertation_Final.pdf
    Size:
    23.82Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy