• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Node Generation on Surfaces and Bounds on Minimal Riesz Energy

    Michaels, Timothy Joseph
    : https://etd.library.vanderbilt.edu/etd-11072017-155807
    http://hdl.handle.net/1803/14461
    : 2017-12-04

    Abstract

    Discretizing a manifold is a far reaching subject throughout the mathematical and physical sciences. This thesis has two principal foci. We present and analyze a variety of algorithms for generating point configurations on d-dimensional sphere and the torus, as well introduce a generic strategy for generating locally quasi-uniform points of variable density on any full dimensional subset of Euclidean space. The methods and algorithms are concentrated on construction and computation, though we also prove some properties of distribution and mesh ratio. For the variable density nodes, we consider the particular application to atmospheric modeling with radial basis functions. We implement a parallelizable algorithm to initialize good starting configurations for efficient modeling. Secondly, we prove a lower bound on the asymptotic Riesz minimal energy in the hypersingular case based off of the linear programming method. This general framework for obtaining lower bounds for minimal energy configurations on the d-dimensional sphere was developed by Yudin and based on the Delsart-Goethals-Seidel bounds on spherical designs. Combining these methods with Levenshtein's work on maximal spherical codes, explicit universal lower bounds are established depending only on the potential function for any monotone potential. We extend this to the asymptotic case as N approaches infinity. In addition, we apply this method to infinite Gaussian potentials on Euclidean space.
    Show full item record

    Files in this item

    Icon
    Name:
    Tim_Michaels_Dissertation.pdf
    Size:
    6.353Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy