• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Interaction of 2D Excitonic Complexes with their Environment

    Klots, Andrey R.
    : https://etd.library.vanderbilt.edu/etd-11072017-134823
    http://hdl.handle.net/1803/14459
    : 2017-11-08

    Abstract

    Two-dimensional materials are one of the most intensively studied systems in the modern solid state physics. Among the broad variety of currently known 2D materials, monolayer transition metal dichalcogenides (TMDC) are especially interesting. These materials exhibit strong light-matter interactions due to the presence of various types of excitons – bound states of charged carriers. Since every atom of a 2D material belongs to the surface, excitons in TMDCs are strongly influenced by their environment. Therefore, in order to understand the physical properties of 2D excitons it is critical to understand how these excitons interact with their environment. In this work, we study one of the most prominent interaction mechanisms – electromagnetic coupling between 2D excitons and their environment. We start with investigating basic properties of excitons in pristine suspended TMDCs decoupled from the environment. We reveal the exciton types, determine their binding energies and uncover dissociation mechanisms. Then, we probe relatively simple interaction mechanism – resonant energy transfer between 2D excitons and their environment. We demonstrate that rate of such interactions can be controlled by changing the Fermi level of the 2D material. Finally, we investigate a more complex phenomenon – dynamic, or frequency-dependent, screening of excitons by environment. We develop a simple theoretical model to understand dynamic screening and then experimentally test our predictions.
    Show full item record

    Files in this item

    Icon
    Name:
    Klots.pdf
    Size:
    3.873Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy