• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Ultrafast phonon and spin dynamics studies in magnetic heterostructure systems

    Qi, Jingbo
    : https://etd.library.vanderbilt.edu/etd-11042008-171352
    http://hdl.handle.net/1803/14423
    : 2008-11-18

    Abstract

    Since the discovery of giant magnetoresistance (GMR), the spin of the electron has attracted significant interest in the field of microelectronics. Spintronics, which involves manipulating both quantum spin states of electrons and their charge states, promises a wide variety of applications in storage, logic and sensors. In order to integrate spintronic devices into conventional semiconductor technology, it will be necessary to obtain an enhanced understanding of both theory and experiment related to the rich phenomena associated with the spin degree freedom for electrons in ferromagnetic materials and semiconductors. Recent developments in epitaxial thin film growth techniques provide unique opportunities to carry out spin-related experiments wherein one may manipulate spin interactions by optical, electrical and magnetic methodologies. The basic thrust of this dissertation encompasses three major topics: 1) carrier and phonon ultrafast dynamics; 2) optically excited spin coherence in the diluted magnetic semiconductor (Ga,Mn)As system; and 3) variation in the magnetic properties of the Fe/NiO system as a function of the thickness of the ferromagnetic layer.
    Show full item record

    Files in this item

    Thumbnail
    Name:
    dissertation.pdf
    Size:
    3.722Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy