• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Genetic Variation in the Voltage-gated Potassium Channel Genes KCNV2 and KCNB1 Contributes to Epilepsy Susceptibility

    Jorge, Benjamin S.
    : https://etd.library.vanderbilt.edu/etd-10292014-130822
    http://hdl.handle.net/1803/14387
    : 2014-10-29

    Abstract

    Epilepsy is a common neurological disease characterized by an enduring predisposition to generate seizures. Although multiple factors contribute to epilepsy, the majority of cases are genetic in origin. Variable expressivity is commonly observed in families with inherited mutations in epilepsy-associated genes, suggesting that variation in genetic modifiers may contribute to epilepsy phenotypes. We previously identified the modulatory voltage-gated potassium channel subunit, Kcnv2, as a candidate modifier gene in a transgenic mouse model of epilepsy. This dissertation outlines: the validation of Kcnv2 as a quantitative modifier of epilepsy in mice; the identification of KCNV2 variants in pediatric epilepsy patients; the determination of Kcnv2 regulatory regions; and the identification of mutations in a delayed-rectifier potassium channel gene, KCNB1, in individuals with epileptic encephalopathy. These studies highlight the importance of delayed-rectifier potassium current in governing neuronal excitability and demonstrate the utility of identifying and characterizing genetic modifiers to elucidate mechanisms of pathogenesis.
    Show full item record

    Files in this item

    Icon
    Name:
    Jorge.pdf
    Size:
    56.23Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy