• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Structural and Functional Analysis of Coronavirus Cysteine Protease Nsp5

    Stobart, Christopher Colin
    : https://etd.library.vanderbilt.edu/etd-10172013-041619
    http://hdl.handle.net/1803/14329
    : 2013-10-18

    Abstract

    Coronaviruses (CoV) are positive-strand RNA viruses that encode large replicase polyproteins that are processed by two or three viral proteases to yield intermediate and mature nonstructural proteins (nsps). Nsp5 (3CLpro, Mpro) is a cysteine protease that is essential for virus replication and mediates processing at 11 cleavage sites, yielding nsps 4 through 16. Due to its critical role in replication, nsp5 is a key target for development of antivirals against coronaviruses. However, the intramolecular and intermolecular mechanisms that govern nsp5 protease structure and function remain unclear. These issues and the limited ability to culture many human coronaviruses make testing of inhibitors against nsp5 challenging during infection in culture. This dissertation discusses the role of newly identified intramolecular residue interactions on protease function, and the conservation of these interactions across coronaviruses. Using mutagenesis, I identified temperature-sensitive and second-site suppressor mutations in murine hepatitis virus (MHV) nsp5 that are distant from known functional determinants and have a profound impact on viral replication and nsp5-mediated polyprotein processing. To evaluate the role of these mutations and their associations in other viruses, I have engineered nsp5-substitution chimeras by introducing the nsp5 proteases of closely and distantly related coronaviruses into the background of MHV. These data show that coronavirus nsp5 protease activity is governed by complex long-distance residue interactions that span the protease structure and have tightly co-evolved within the context of the greater polyprotein and viral background. Collectively, these data define a new approach for the study of human coronavirus nsp5 proteases in an efficiently replicating non-human coronavirus, provide a platform for testing antivirals against the proteases from virus that are difficult to cultivate, and provide key new insights into the regulatory mechanisms directing nsp5 structure and function.
    Show full item record

    Files in this item

    Icon
    Name:
    Stobart.pdf
    Size:
    28.55Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy