• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Confronting Complexity: A Comprehensive Statistical and Computational Strategy for Identifying the Missing Link between Genotype and Phenotype

    Thornton-Wells, Tricia Ann
    : https://etd.library.vanderbilt.edu/etd-09272006-120618
    http://hdl.handle.net/1803/14241
    : 2006-11-01

    Abstract

    Common diseases with a genetic basis are likely to have a very complex etiology, in which the mapping between genotype and phenotype is far from straightforward. A new comprehensive statistical and computational strategy for identifying the missing link between genotype and phenotype is proposed, which emphasizes the need to address heterogeneity in the first stage of any analysis. A simulation study comparing three ‘unsupervised’ clustering methods was conducted, and the best method—Bayesian Classification—was evaluated further for its performance and applicability to real data under a wide range of simulation conditions. The proposed two-stage analysis strategy was then applied to late-onset Alzheimer disease data. Bayesian Classification found statistically significant clusterings for independent family-based and case-control datasets, which used the same five markers in LRRTM3 as their most influential in determining cluster assignment. In subsequent analyses to detect main effects and gene-gene interactions, markers in four genes—PLAU, IDE, CDC2 and ACE—were found to be associated with late-onset Alzheimer disease in particular subsets of the data based on their LRRTM3 haplotype. While each of these genes are viable candidates for LOAD based on their known biological function, further studies are needed to replicate these statistical findings and to elucidate possible biological interaction mechanisms between LRRTM3 and these genes. Going forward, genetic studies will increasingly focus time and resources to collecting phenotypic data that can refine definitions or subcategories of traits or diseases and can serve as endophenotypes, which are more likely to have simple etiologies and to directly map to specific genetic markers. In the case of neurological diseases, one collection of phenotyping technologies which has matured considerably over the past five to ten years is neuroimaging. In addition, an emphasis on possible biological mechanisms of disease has positively influenced the design of behavioral assessment tools, increasing their utility as phenotyping tools, which provide endophenotypes that can be mapped to genotypic data. Methodologies enabling the integration of disparate data sources (genotyping and neuroimaging or behavioral) must be investigated in order to harness the power inherit in their complexity.
    Show full item record

    Files in this item

    Icon
    Name:
    Dissertation_FinalDraft_19Sept ...
    Size:
    2.510Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy