• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    The mechanisms by which apoptotic neurons in the developing dorsal root ganglia are engulfed

    Sullivan, Chelsea Suzanne
    : https://etd.library.vanderbilt.edu/etd-09242014-104555
    http://hdl.handle.net/1803/14221
    : 2014-10-01

    Abstract

    During development of the nervous system, approximately 50% of the neurons generated undergo apoptosis as part of a normal pruning process. The neuronal corpses must be efficiently cleared to prevent an immune system response. We demonstrated that satellite glial precursor cells are the main phagocytes in the developing dorsal root ganglia (DRG), and identified a novel engulfment receptor necessary for this engulfment, Jedi-1. Jedi-1 contains immunoreceptor tyrosine based activation motifs (ITAMs) that bind to the tyrosine kinase Syk, which is required for phagocytosis. Jedi-1 also contains an NPXY motif that is required for interaction with the adapter protein GULP, which was also necessary for engulfment. Jedi-1 associates with GULP and recruits clathrin heavy chain (CHC), which promotes actin rearrangement required for engulfment. To determine the role of Jedi-1 in vivo we generated jedi-1 -/- mice. Apoptotic neurons accumulate in the developing DRG of jedi-1 -/- mice, and the mice develop autoimmune disease including the production of autoantibodies and kidney dysfunction. The jedi-1 null mice also exhibit excessive itching which results in skin lesions. Our data suggests that this itch phenotype may be due to activation of satellite glial cells in response to defective clearance of apoptotic neurons.
    Show full item record

    Files in this item

    Icon
    Name:
    Sullivan.pdf
    Size:
    5.692Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy