• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Cue Integration in Spatial Navigation – a Bayesian Approach

    Chen, Xiaoli
    : https://etd.library.vanderbilt.edu/etd-09122014-121136
    http://hdl.handle.net/1803/14125
    : 2014-09-16

    Abstract

    The current study aimed to apply the Bayesian cue integration paradigm to examine spatial cue interaction in human navigation. Participants completed a triangle completion task either in an immersive virtual environment using self-motion cues and visual landmarks (Experiments 1 to 3) or on a 2D desktop virtual display using proximal and distal landmarks (Experiment 4). Experiments 1A and 1B extended previous studies by experimentally manipulating cue reliability of self-motion cues and visual cues independently and within-subjects. Results showed that participants integrated these two cue types optimally in a Bayesian manner overall, but at the cost of being sub-optimal at individual reliability levels of the manipulated cue. Experiment 2 was designed to mislead participants about cue reliability by providing distorted feedback. Cue relative reliability was changed by the feedback, and the direction of change depended on how the feedback was distorted. Despite changes in cue reliability, Bayesian principles mostly held true, but an additional hysteresis assumption was needed to fully explain the results. Experiment 3 aimed to incorporate landmark instability into the paradigm. The results were directionally consistent with the hypothesis that cue instability affected cue weights indirectly by influencing cue reliability. In all three of these experiments, we observed positive correlations across participants between actual weights assigned to the cues and Bayesian weights, demonstrating that the cue weighting process in general followed Bayesian principles when self-motion cues and visual cues were concerned. Experiment 4 represents our efforts to accommodate the paradigm to a 2-dimensional virtual display on desktop computer in order to examine the interaction between different visual cues. We examined proximal and distal landmarks, whose interaction largely deviated from Bayesian principles. Together, the findings from our 5 experiments help us to gain a deeper understanding of how spatial cues interact during the process of spatial navigation. Our findings not only help clarify some critical issues in the spatial navigation domain but also impose more questions for future investigation.
    Show full item record

    Files in this item

    Icon
    Name:
    Xiaoli_Chen.pdf
    Size:
    16.72Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy