• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Investigation of Neuronal Manganese Regulation in Physiology and Disease Using High Throughput Screening, Induced Pluripotent Stem Cells, and Chemical Biology Approaches.

    Kumar, Kevin Krishan
    : https://etd.library.vanderbilt.edu/etd-08262014-111713
    http://hdl.handle.net/1803/14021
    : 2014-08-29

    Abstract

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington’s disease (HD). However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content. Utilizing the identified small molecules, we tested for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules, demonstrating cell-level regulation of Mn content across neuronal differentiation. In a parallel study, we sought to reveal any cellular metabolic phenotypes influenced by Mn exposure and/or the mutant HD genotype using an unbiased metabolomics approach. Our analysis revealed metabolic evidence of an interaction between the HD genotype and environmentally relevant Mn exposures in a striatal neural lineage. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathogenesis of both HD and Mn neurotoxicity.
    Show full item record

    Files in this item

    Icon
    Name:
    KevinKumar.pdf
    Size:
    14.38Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy