• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Mechanisms Regulating Cytokinetic Contractile Ring Formation and Anchoring in Schizosaccharomyces pombe

    Willet, Alaina Hollister
    : https://etd.library.vanderbilt.edu/etd-08102017-152412
    http://hdl.handle.net/1803/13870
    : 2017-08-11

    Abstract

    In Schizosaccharomyces pombe cytokinesis requires assembly and constriction of an actomyosin-based contractile ring (CR). Nucleation of F-actin for the CR requires a single essential formin, Cdc12, that localizes to the cell middle upon mitotic onset. The molecular mechanisms dictating its divison site targeting during cytokinesis are unknown. We defined that a Cdc12 N-terminal motif directly binds the F-BAR domain of the scaffolding protein Cdc15 and this interaction is controlled by Cdk1 phosphorylation of Cdc12. Phosphorylation of Cdc12 inhibits binding to the F-BAR Cdc15. cdc12 alleles that cannot bind Cdc15 or with all six Cdk1 sites mutated to phospho-mimetic residues show reduced Cdc12 cell division site accumulation and delayed CR formation. Thus Cdk1 phosphorylation of Cdc12 antagonizes its interaction with Cdc15 and its division site localization, consistent with a general role for Cdk1 in inhibiting cytokinesis until chromosome segregation is complete. The CR is physically linked to the plasma membrane (PM). Cells lacking efr3, which encodes a conserved PM scaffold for the phosphatidylinositol 4-kinase Stt4, build CRs that can slide away from the cell middle in a myosin-V-dependent manner. The Efr3-dependent CR anchoring mechanism is distinct from previously reported pathways dependent on the F-BAR protein Cdc15 and paxillin. In efr3∆, the concentrations of several membrane-binding proteins were reduced in the CR and/or on the PM. Our results suggest that proper PM lipid composition is important to stabilize the central position of the CR and resist myosin V-based forces to promote the fidelity of cell division.
    Show full item record

    Files in this item

    Icon
    Name:
    AWillet.pdf
    Size:
    28.99Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy