• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Non-visual arrestins bind mitogen activated protein kinases and regulate their signaling

    Coffa, Sergio
    : https://etd.library.vanderbilt.edu/etd-08042011-074210
    http://hdl.handle.net/1803/13814
    : 2011-08-05

    Abstract

    Arrestins are multifunctional signaling proteins, important for the regulation of signal transduction and the trafficking of G protein-coupled receptors (GPCRs). Recently, GPCR-arrestin interactions have been proposed to be necessary for activation of G-protein-independent signaling pathways, one of which is the activation of mitogen activated protein kinases (MAPKs). To investigate potential arrestin-MAPK interactions, we have used a variety of molecular tools including the co-expression of the individual domains of arrestin with single components of the c-Raf1-MEK1-ERK2 signaling cascade. We found that non-visual arrestins bind all three kinases, assembling c-Raf1, MEK1, and ERK2 along their short axis, with each kinase directly interacting with both domains. To further investigate the interactions between arrestins and MAPK, we used alanine-scanning mutagenesis of residues on the non-receptor-binding surface of arrestin that are conserved between arrestin-2 and arrestin-3. We found that the substitution of arginine 307 with an alanine significantly reduced arrestin-2 binding to c-Raf1, whereas the interactions of this mutant with active phosphorylated receptors and the downstream kinases MEK1 and ERK2 were not affected. In contrast to wild type arrestin-2, Arg307Ala mutant failed to rescue arrestin-dependent ERK1/2 activation in arrestin-2/3 knockout MEFs. Interestingly, alanine substitution of the homologous arrestin-3 residue (lysine 308) did not significantly affect c-Raf1 binding or its ability to promote ERK1/2 activation. Together, these findings suggest that the two non-visual arrestins perform the same function via distinct molecular mechanisms. To further elucidate arrestin-MAPK interactions, we performed in vitro binding assays using pure proteins, and demonstrated that ERK2 directly binds free arrestin-2 and arrestin-3, as well as receptor-associated arrestin-1, arrestin-2, and arrestin-3. We have also shown that the arrestin-2 and arrestin-3 association with beta2-adrenergic receptors (β2ARs) significantly enhances ERK2 binding, yet has virtually no effect upon arrestins interactions with the upstream kinases c-Raf1 and MEK1. Arrestins exist in three conformational states: free, receptor-bound, and microtubule (MT)-bound. Using conformationally biased arrestin mutants, we found that ERK2 prefers two conformations: MT-bound, mimicked by “constitutively inactive” arrestin-Δ7, and receptor-bound, mimicked by “pre-activated” arrestin-3A. Both mutants were able to rescue arrestin-mediated ERK1/2 activation in arrestin-2/3 double knockout fibroblasts. Lastly, we found that the arrestin-2 interaction with c-Raf1 is enhanced by receptor binding, whereas the interaction between arrestin-3 and c-Raf1 is not, thus suggesting that the two non-visual arrestins execute similar functions via diverse mechanisms.
    Show full item record

    Files in this item

    Icon
    Name:
    Sergio_Coffa_PhD_Thesis.pdf
    Size:
    5.259Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy