• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Electrospun Nanofiber Anodes of Low Platinum Loading for Hydrogen/Air PEM Fuel Cells

    Poynter, Amy Denise
    : https://etd.library.vanderbilt.edu/etd-08012014-101630
    http://hdl.handle.net/1803/13776
    : 2014-08-04

    Abstract

    Membrane-electrode-assemblies (MEAs) were fabricated with electrospun nanofiber electrodes containing 40% Pt/C, a binder of Nafion and poly(acrylic acid), and a Nafion 212 cation-exchange membrane. MEA performance in a hydrogen/air fuel cell was evaluated at 80°C for a range of anode Pt loadings (0.026-0.126 mgPt/cm2). In all experiments, a nanofiber cathode was used with a Pt loading of 0.10 mgPt/cm2. The electrospun anodes were evaluated to: (i) determine the effect of anode Pt loading on fuel cell performance and (ii) assess the differences in power output when the MEA utilized a conventional slurry catalyst gas diffusion anode. The maximum power density for an MEA with a gas diffusion anode was 432 mW/cm2 at 0.10 mgPt/cm2 Pt loading, whereas the maximum power density for an electrospun anode at the same Pt loading was 491 mW/cm2 (a 14% improvement) It was also found that the measured maximum power density was essentially constant for nanofiber anode Pt loadings in the range of 0.046-0.126 mgPt/cm2. Only at an anode Pt loading of 0.026 mgPt/cm2 did the observed maximum power density decrease. An electrospun anode MEA at a Pt loading of 0.046 mgPt/cm2 produced more power than an MEA with a 0.1 mgPt/cm2 Pt-loaded gas diffusion anode (488 vs. 432 mW/cm2 at maximum power). This study clearly showed that the Pt loading of a hydrogen/air fuel cell anode can be significantly reduced by using an electrospun nanofiber mat.
    Show full item record

    Files in this item

    Icon
    Name:
    Poynter_MS_Thesis_final.pdf
    Size:
    1.629Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy