• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    A Modular Computer Program for the Acquisition and Analysis of Biomagnetic Signals Using SQUID Magnetometers

    Irimia, Andrei
    : https://etd.library.vanderbilt.edu/etd-07292004-170244
    http://hdl.handle.net/1803/13699
    : 2004-08-02

    Abstract

    The study of bioelectric and biomagnetic activity in the human gastrointestinal (GI) tract is of great interest in clinical research due to the proven possibility to detect pathological conditions thereof from electric and magnetic field recordings. The magnetogastrogram (MGG) and magnetoenterogram (MENG) can be recorded using superconducting quantum interference device (SQUID) magnetometers, which are the most sensitive magnetic flux-to-voltage converters currently available. To address the urgent need for powerful acquisition & analysis software tools faced by many researchers and clinicians in this important area of investigation, an integrative and modular computer program was developed for the acquisition, processing and analysis of GI SQUID signals. In addition to a robust hardware implementation for efficient data acquisition, a number of signal processing and analysis modules were developed to serve in a variety of both clinical procedures and scientific investigations. Implemented software features include data processing and visualization, waterfall plots of signal frequency spectra as well as spatial maps of GI signal frequencies. Moreover, a software tool providing powerful 3D visualizations of GI signals was created using realistic models of the human torso and internal organs. Due to the novelty of our modular and integrative approach to GI signal analysis and to our highly realistic depiction of gastric and intestinal signals originating in the human body, our powerful methods for biomagnetic field analysis are bound to set the standard in today's gastroenterological research and possibly to help revolutionize clinical GI diagnosis methods via biomagnetic signal analysis.
    Show full item record

    Files in this item

    Icon
    Name:
    thesis.pdf
    Size:
    3.579Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy