• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Photoexcited Carrier Dynamics in Mixed Halide Perovskites: A Morphological Perspective

    Talbert, Eric Michael
    : https://etd.library.vanderbilt.edu/etd-07222016-162457
    http://hdl.handle.net/1803/13468
    : 2016-08-01

    Abstract

    In this work, we probe the mechanisms of excitation and subsequent recombination of electron-hole pairs in the mixed bandgap perovskite crystal CH<sub>3</sub>NH<sub>3</sub>Pb(I<sub>1-x</sub>Br<sub>x</sub>)<sub>3</sub>, x=0-0.33, using ultrafast spectroscopies. The perovskite grain size can be tuned to reflect the size of intrinsic iodide-rich nuclei, which depend strongly on coordination of PbI<sub>2</sub> with the deposition solvent prior to spin-casting. These iodide-rich nuclei, visualized for the first time in SEM and STEM-EDS, serve as low-bandgap recombination centers within the mixed crystal. Picosecond time-resolved photoluminescence (tr-PL) reveals that higher bromide compositions and smaller intrinsic nuclei maximize carrier lifetime. Introduction of bromide also affects absorbance: as bromide composition increases, the bulk bandgap increases, shifting the absorbance band edge into the visible range. While femtosecond transient absorption spectroscopy (TAS) reveals that lifetimes of carrier trapping and charge injection are independent of bromide content, the lifetime of electron thermalization shortens with added bromide, indicating that bromide introduction improves phonon transport as well as carrier transport. With an understanding of intrinsic compositional variations in mixed halide perovskites, the unique carrier transport properties of these material may be realized in future solar cells and light-emitting diodes.
    Show full item record

    Files in this item

    Icon
    Name:
    Talbert.pdf
    Size:
    2.435Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy