• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Phototunable Mechanical Properties of Azobenzene-Containing Hydrogels

    Baer, Bradly Bennett
    : https://etd.library.vanderbilt.edu/etd-07222016-122730
    http://hdl.handle.net/1803/13458
    : 2016-08-03

    Abstract

    The mechanical properties of the extracellular matrix are dynamic and change during biological processes such as disease progression and wound healing. Most synthetic (or man-made) tissue scaffolds have static properties. Therefore it is necessary to replate cells in order to determine the effects that different matrix mechanical properties have on cells, and virtually impossible to study the effects of a dynamically changing modulus on cell growth. There have been several scaffolds recently developed with tunable mechanical properties, but few exhibit any reversibility which is important for simulating repeated wounding and healing cycles. In this work, we develop a gelatin based hydrogel with azodianiline (ADA) as a secondary crosslinking unit. Upon irradiation with 365 nm light the gel softens as the ADA undergoes a photoisomerization. These changes can be reversed upon exposure to visible light. With applications in mechanobiology in mind, contraction at the cellular scale was measured, as well as the macroscopic changes in the shear elastic modulus and compressive modulus in response to exposure to UV and visible light.
    Show full item record

    Files in this item

    Icon
    Name:
    Baer.pdf
    Size:
    493.3Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy