• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Endothelial Progenitor Cell Subpopulation Profiling Reveals a Critical Role for Endoglin in Retinal Neovascularization

    Barnett, Joshua McAlister
    : https://etd.library.vanderbilt.edu/etd-07222011-181018
    http://hdl.handle.net/1803/13447
    : 2011-08-08

    Abstract

    The field of research into endothelial progenitor cells is complex and difficult to interpret. There are a number different investigators working on specific subpopulations that are isolated in unique ways using unique or semi-unique cell surface antigens. Each population is, additionally, assayed in a specialized way corresponding to a certain tissue or disease process. All of these variables make it difficult to determine what cell populations might be important in a particular tissue or disease state, and greatly complicate comparisons between studies and cell populations. These studies sought to develop methods for: (1) analyzing definitive EPC populations and (2) comparing them to one another in the context of ocular neovascularization. The first aim of this work was to develop quantum dot-coded EPC subpopulations and to assess their recruitment to neovascular tufts. This was done using quantum dot nanocrystals conjugated to acetylated low density lipoproteins. Labeled endothelial progenitor cells were then tracked for incorporation into a model of laser-induced choroidal neovascularization. The second aim was to develop high throughput, in vitro methods to analyze the angiogenic capacity of EPCs using quantum dot coded subpopulations. This analytical tool aids in separating the individual aspects of EPC functions: (1) homing to angiogenic sites, (2) incorporating into and forming capillary tubes, and (3) proliferating into neovascular lesions. A unique system of using a parallel plate flow chamber was developed to assess EPC homing capabilities. Using this system, the EPC subpopulation CD133+/CD34+ was shown to be highly capable in terms of all three EPC functions. The third aim was to determine the role of endoglin in oxygen-induced retinopathy (OIR) using the methods developed to analyze the angiogenic capacity of EPCs. Endoglin was studied in the context of retinal neovascularization, and determined to have a pro-angiogenic role, largely through its control of cell proliferation in EPCs. Using an antibody to block endoglin in an OIR model resulted in the dose dependent inhibition of neovascular area, which inhibited additively with VEGF-directed treatments.
    Show full item record

    Files in this item

    Icon
    Name:
    Josh_Barnett_Dissertation.pdf
    Size:
    2.559Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy