• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Binaural-cue weighting in sound localization with open-fit hearing aids and in simulated reverberation

    Diedesch, Anna Colleen
    : https://etd.library.vanderbilt.edu/etd-07212016-175018
    http://hdl.handle.net/1803/13402
    : 2016-07-29

    Abstract

    Interaural time (ITD) and level differences (ILD) are susceptible to distortion by multipath acoustics due to reverberation, echoes, and potentially with open-fit, behind-the-ear (BTE) hearing aids, which pose an additional delay between acoustic and processed sound (~2-5ms). Here, ten young, normal hearing listeners localized broadband and narrowband (500, 4000, 500+4000 Hz) noise. Listeners were fit with linear amplification and evaluated in three aided conditions: unaided, open-fit, and occluded BTE coupling. Sounds were presented from 64 loudspeakers covering 360º azimuth in an anechoic chamber. Twenty-three target locations were evaluated, spanning ±61º. Sounds were presented in three virtual acoustic environments: anechoic, single virtual wall, and simulated 10m X 10m room. The virtual wall was 80% reflective (α=0.2) and oriented parallel to the listener’s forward gaze, at a distance of 5m to the right. The room condition simulated four virtual walls (α=0.5), 5m to the left and right, 6.67m in front, and 3.33m behind the listening position. Performance was assessed across conditions by measuring localization gain (slope), localization variance, localization error, and front-back confusion rate. Results showed greater variability in the simulated room than anechoic conditions, particularly for aided conditions (occluded > open > unaided). Aided listening compressed localization gain at 4000 Hz and expanded gain at 500 Hz. Errors were generally reduced when 500 and 4000 Hz were played simultaneously. Additionally, in-ear acoustic recordings of broadband noise were made in all aided and room conditions. Binaural cross-correlation and intensity-difference calculation were used to estimate frequency-specific ITD and ILD, respectively, from the recordings. Consistent with previous research, ITD became erratic and ILD diminished in simulated rooms compared to anechoic. Effects of hearing aid venting were less noticeable. Finally, results were quantified in the form of binaural-cue weighting (ITD/ILD “trading ratio”) on the basis of measured interaural cue values extracted from in-ear recordings obtained for each listener and condition.
    Show full item record

    Files in this item

    Icon
    Name:
    Diedesch.pdf
    Size:
    5.073Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy