• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Quantitative optical imaging of vascular structure and function in a model of peripheral arterial disease

    Poole, Kristin Marie
    : https://etd.library.vanderbilt.edu/etd-07202012-162913
    http://hdl.handle.net/1803/13329
    : 2012-07-31

    Abstract

    Peripheral arterial disease (PAD) leads to an increased risk of myocardial infarction and stroke, increased mortality, and reduced quality of life. The mouse hind limb ischemia (HLI) model is the most commonly used system for studying the mechanisms of collateral vessel formation and for testing new PAD therapies, but there is a lack of techniques for acquiring physiologically-relevant, quantitative data intravitally in this model. In this work, non-invasive, quantitative optical imaging techniques were applied to the mouse HLI model over a time course. Quantification of hemoglobin oxygen saturation with hyperspectral imaging was sensitive to changes in the oxygenation of the ischemic hind limb. Hemoglobin oxygen saturation measurements also correlated well with two standard measures of hind limb recovery: the perfusion ratio and probe-based tissue oxygen tension. Additionally, optical coherence tomography (OCT) techniques were applied to study changes in blood flow with high resolution. Restoration of blood flow in vessels distal to the site of occlusion was monitored non-invasively with Doppler OCT. Three dimensional images of the adductor muscle acquired with Doppler OCT revealed changes in collateral vessel morphology consistent with post-mortem analyses in previous studies. This visualization of hind limb vasculature in a given mouse over time without contrast agents or post-mortem methods was previously unattainable. Taken together, hyperspectral imaging and OCT enable acquisition of both functional and morphological data which fill the gaps in acquiring a complete picture of recovery in the mouse HLI model. Therefore, these optical imaging methods hold promise as tools for studying the mechanisms of vascular recovery and evaluating novel therapeutic treatments in preclinical studies.
    Show full item record

    Files in this item

    Icon
    Name:
    MSThesisKristinPoole.pdf
    Size:
    1.862Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy