• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Magnetic Pose Estimation and Robotic Manipulation of Magnetically Actuated Capsule Endoscopes

    Taddese, Addisu Zerihun
    : https://etd.library.vanderbilt.edu/etd-07192018-010216
    http://hdl.handle.net/1803/13276
    : 2018-07-31

    Abstract

    Magnetic actuation is currently the most promising approach for actively and wirelessly manipulating capsule endoscopes (CEs) inside the gastrointestinal (GI) tract. Actively actuated CEs have the potential to transform current medical practice and significantly improve patient outcomes. In this dissertation, two fundamental problems associated with active actuation of CEs are studied. Our approach to solving these problems were developed in the context of advancing our robotically guided soft-tethered CE system toward clinical adoption. The first problem pertains to estimating the pose of a CE while it is inside a patient. Current magnetic field based pose estimation methods face significant challenges in their path to clinical adoption. First, due to presence of regions of magnetic field singularity, the accuracy of the system can be significantly degraded while being used for actuation. Second, current pose estimation methods need accurate knowledge of the capsule's initial pose before they can successfully track the capsule. This, however, may not be possible to do in clinical settings. We propose a novel hybrid approach employing a combination of static and time-varying magnetic field sources and show that this system has no regions of singularity while eliminating the need for initialization. The proposed system was experimentally validated for accuracy, workspace size, update rate and performance in regions where magnetic singularity previously existed. The second problem has to do with closed-loop control, where computed pose estimates are used as sensory feedback to compensate for deviation of the capsule's pose from the desired or commanded pose. We present two schemes of closed-loop control expanding existing formulations of magnetic control and integrating them with our pose estimation method. The controllers were validated in autonomous path following tasks in simulation and real world experiments. Our solution to these problems are foundational to the future development of effective tele-operation systems where the motion of the CE is transparently controlled by a physician.
    Show full item record

    Files in this item

    Icon
    Name:
    Taddese-dissertation.pdf
    Size:
    20.14Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Related items

    Showing items related by title, author, creator and subject.

    • Answering the Call: Lessons Learned from Montgomery County Middle School Magnet Consortium 
      Hollenberg, Eugene; Henrick, Erin; Hamilton, Melissa (Vanderbilt University. Peabody College, 2008-02-22)
      In the fall of 2005, Montgomery County Public Schools (MCPS) opened three magnet middle schools in a portion of the school district with a high minority population and percentage of students receiving free and reduced ...
    • Improved imaging of brain white matter using diffusion weighted magnetic resonance imaging 
      Jeong, Ha-Kyu (2008-07-28)
      Department: Biomedical Engineering
      Diffusion weighted magnetic resonance imaging (DW-MRI) is an imaging technique that provides a measure of local tissue microstructure based on the water molecular diffusion. Although this imaging method has been successfully ...
    • Microstructure and Magnetic Properties of FePt/MgO Multilayered Thin Films 
      Fu, Yang (2006-12-11)
      Department: Interdisciplinary Materials Science
      FePt alloys with the CuAuI L10-ordered structure are important magnetic materials since their large uniaxial magnetocrystalline anisotropy can overcome the thermal stability problem of high-density magnetic recording media. ...

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy