• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Age- and Diabetes-Related Changes in the Matrix and Fracture Resistance of Bone

    Creecy, Amy
    : https://etd.library.vanderbilt.edu/etd-07182018-171913
    http://hdl.handle.net/1803/13220
    : 2018-07-30

    Abstract

    Fracture resistance of bone depends on the hierarchical organization of its constituents, primarily the organic matrix, mineral, and water, and as such, requires characterization at multiple length-scales. The extracellular matrix of bone influences fracture resistance by promoting energy dissipation prior to breaking and inhibiting crack propagation. Aging and type 2 diabetes reduce bone quality independently of bone quantity, possibly through an accumulation of advanced glycation end-products (AGEs). However, it is not known how aging and type 2 diabetes affect bone matrix. Towards this goal, we have analyzed bone’s fracture resistance and matrix from preclinical models of type 2 diabetes and aging. Type 2 diabetes increased brittleness of cortical bone in a preclinical model. Higher tissue mineralization density and changes to the secondary structure of collagen could have resulted in the brittling of cortical bone. However, the brittleness phenotype did not progressively worsen with duration of diabetes. Aging lowered strength, toughness, and fracture toughness of cortical bone in a preclinical model. The bone matrix of older mice had higher mineralization density, altered collagen structure, higher enzymatic and non-enzymatic AGEs crosslinks, and lower bound water, all of which could have deleteriously affected fracture resistance. Furthermore, when analyzing proteins for post-translational modifications at specific sites, AGEs were found to be higher on specific residues of proteins from the matrix of older mice. Overall, matrix changes occur with aging and type 2 diabetes in preclinical models that have lower fracture resistance.
    Show full item record

    Files in this item

    Icon
    Name:
    Creecy.pdf
    Size:
    3.631Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy