• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Characterizing temporal and spatial trends in soil geochemistry on Polder 32, southwest Bangladesh

    Fry, David Christopher
    : https://etd.library.vanderbilt.edu/etd-07162015-214524
    http://hdl.handle.net/1803/13094
    : 2015-07-21

    Abstract

    Soil samples were collected during three field campaigns to determine seasonal and spatial trends of soil salinity, soil acidity and arsenic concentrations on Polder 32 in coastal Bangladesh. Many farmers on Polder 32 use a crop rotation of rice cultivation in the wet season and shrimp farming in the dry season, and studies have shown that this rotation can increase soil salinity and acidity. Soil samples were collected from rice paddies and shrimp ponds on the polder, from adjacent tidal channels, and from the Sunderbans mangrove forest to the SE of the polder, and analyzed for both geochemical and physical parameters and then subjected to statistical tests and mapped using geographic information system software to find correlations. Results support the belief that soil salinity, acidity and arsenic concentration exhibit spatial variation, and soil salinity and acidity show seasonal variation. Rice grown in paddies should be unaffected by salt concentrations in the wet season, while arsenic concentrations in soil may be high enough to cause unsafe As levels in produced rice. Future studies should measure the As concentration in rice to determine the risk of bioavailable arsenic transmitted from soil in the area. No evidence of soil acidification was found, most likely due to the presence of soil carbonate.
    Show full item record

    Files in this item

    Icon
    Name:
    Fry.pdf
    Size:
    3.372Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy