• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Macrophages and Endothelial Cells in the Pancreatic Islet Microenvironment Promote β Cell Regeneration

    Aamodt, Kristie Irene
    : https://etd.library.vanderbilt.edu/etd-07162015-063532
    http://hdl.handle.net/1803/13086
    : 2015-07-16

    Abstract

    Reduced pancreatic β cell mass is a hallmark of diabetes, which makes the ability to increase or restore β cell mass a major therapeutic goal. While testing the hypothesis that increased endothelial cell signaling would increase β cell mass using a model of inducible vascular endothelial growth factor-A (VEGF-A) overexpression in β cells (βVEGF-A mouse), we found that increased VEGF-A leads to reduced, not increased, β cell mass. Surprisingly, withdrawal of the VEGF-A stimulus is followed by robust β cell proliferation, leading to islet regeneration, normalization of β cell mass, and reestablishment of the intra-islet capillary network. Using islet and bone marrow transplantation approaches we found that β cell proliferation is dependent on the local microenvironment of endothelial cells, β cells, and bone marrow-derived macrophages recruited to the islets upon VEGF-A induction. Depleting macrophages greatly reduced β cell proliferation, indicating that these macrophages are required for the β cell proliferative response in regenerating islets. Based on these data, in addition to transcriptome analysis of FACS-sorted islet β cell, and islet-derived endothelial cell and macrophage populations during VEGF-A induction and normalization, we propose a new paradigm for β cell regeneration where β cell self-renewal is mediated by coordinated interactions between macrophages recruited to the site of β cell injury, intra-islet endothelial cells, and β cells. In this model, (1) increased growth factors produced by β cells, endothelial cells, macrophages, (2) increased production of growth factor receptors and integrins on β cells, and (3) increased integrin activation by the extracellular matrix cause simultaneous, and potentially synergistic, activation of the PI3K/Akt and MAPK signaling pathways, leading to β cell proliferation.
    Show full item record

    Files in this item

    Icon
    Name:
    Aamodt.pdf
    Size:
    503.9Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy