• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Novel MOSFET-Based Fluidic Sensors and Simulations of Thermal Bubble Nucleation in Nanochannels

    Sridhar, Manoj
    : https://etd.library.vanderbilt.edu/etd-07162008-102349
    http://hdl.handle.net/1803/13056
    : 2008-07-21

    Abstract

    Traditional particle sensing schemes are based on the resistive-pulse sensing technique. A non-conducting particle displaces a volume of electrolyte, equal to its own volume, from a sensing channel when it flows through. Correspondingly, the resistance of the sensing channel increases and this resistance modulation is measured directly by the resultant ionic current or electrical potential modulation across the sensing channel. The novel MOSFET-based sensing scheme integrates a MOSFET with the fluidic circuit and detects particles by monitoring the MOSFET drain current modulation instead of the direct ionic current modulation. Using this new sensing scheme, we are able to detect a minimum volume ratio of the particle to the sensing channel of 0.006%, which is about ten times lower than the lowest detected volume ratio previously reported in the literature. The new sensing scheme is first tested at the microscale and then extended down to the nanoscale. The fundamental limitation of particle sensors is the amplitude of noise observed with respect to the baseline current measured. It was recently suggested that nanobubble nucleation and transport inside nanopore-based devices could be a source of noise in nanofluidic experiments. This source of noise has not been investigated thoroughly. We carried out molecular dynamics simulations of thermal bubble nucleation to investigate whether nanobubbles can indeed form in nanochannels and thus, be a plausible source of noise in nanofluidic experiments. We investigated thermal bubble nucleation in nano-confined NPT systems of argon and water and found that bubbles did not form for temperatures up to the superheat limit of the fluids when the external pressure on the system ranged from 0.01 to 0.1 MPa. We propose a pressure wave hypothesis to explain our simulation results and show that our results are consistent with this hypothesis. Our initial investigations suggest that it might be difficult to form thermal bubbles in nano-confined systems. This casts doubt on whether nanobubbles can be cited as a source of noise in nanofluidic experiments.
    Show full item record

    Files in this item

    Icon
    Name:
    ManojThesis.pdf
    Size:
    14.83Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy