• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Feasibility Study for Image-Guided Kidney Surgery: Assessment of Required Intraoperative Surface for Accurate Physical to Image Space Registrations

    Benincasa, Anne Browning
    : https://etd.library.vanderbilt.edu/etd-07122006-111755
    http://hdl.handle.net/1803/12936
    : 2006-07-12

    Abstract

    A notable complication of applying current image-guided surgery techniques of soft tissue to kidney resections (nephrectomies) is the limited field of view of the intraoperative kidney surface. This limited view constrains the ability to obtain a geometrically descriptive surface for accurate surface-based registrations. Examining the affects of the limited view involved using two orientations of a kidney phantom to model typical laparoscopic and open partial nephrectomy views. Point-based registrations, using either rigidly attached markers or anatomical landmarks as fiducials, served as initial alignments for surface-based registrations. Laser range scanner (LRS) obtained surfaces were registered to the phantom's image surface using a rigid iterative closest point algorithm. Subsets of each orientation’s LRS surface were used in a robustness test to determine which parts of the surface can accurately predict registrations for the entire surface. Results suggest that obtaining accurate registrations is a function of the percentage of the total surface and of geometric surface properties, such as curvature. Approximately 30% of the total image surface is required, regardless of the location of that surface subset. However, that percentage decreases when the surface subset contains information from opposite ends of the surface and/or unique anatomical features, such as the renal artery and vein. Thus, under optimal conditions, such as maximized visible surface, image-guided kidney surgery is feasible.
    Show full item record

    Files in this item

    Icon
    Name:
    electronicthesis_nopic.pdf
    Size:
    1.548Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy