• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Studies of the evolution of felsic magma systems: I. Zircon in historic eruptions, Iceland; II. Modeling magma chamber evolution leading to the Peach Spring Tuff supereruption, Arizona, Nevada and California

    Carley, Tamara Lou
    : https://etd.library.vanderbilt.edu/etd-07092010-143700
    http://hdl.handle.net/1803/12871
    : 2010-07-16

    Abstract

    This two-part study is focused on the evolution of silicic magma in two very different settings. The first part is a study of zircon to understand the generation, storage, and evolution of felsic magmas erupted in historical times in Iceland. Icelandic zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of continental zircon. Icelandic zircon exhibit generally low U (<200 ppm), low U/Th (<1), low Hf (<10,000 ppm) and uniformly high Ti (>10 ppm). Ti concentrations imply that zircon grew at relatively high temperatures (800-950 °C). U-Th ages demonstrate the range of ages is far less than is common in continental settings, but zircon growth predates eruptions by thousands to tens of thousands of years. These magmas did not evolve by monotonic fractionation, but experienced zircon entrainment and open-system magma recharge. The second part of this study is a modeling project focused on better understanding the conditions that lead to the evolution and destabilization of the Peach Spring Tuff (AZ, CA, NV) in particular, and large (super-eruption) silicic magmas in general. Analyses of pumice and fiamme from intracaldera and outflow exposures reveal systematic heterogeneity in the underlying chamber at the time of eruption. Whole-rock compositions and modeling results are compatible with differentiation in a shallow magma reservoir at ~200-300 MPa. Destabilization of this large chamber appears to be strongly related to the timing of water saturation relative to other phases and to the pseudo-invariant, both of which are correlated with pressure and water content. Changes in total magma volume and density are modest for systems with high initial water contents (7 wt. %) and significant for systems with low initial water (2-3 wt. %). In the latter case, crystallization and bubble exsolution likely promote magma destabilization and eruption.
    Show full item record

    Files in this item

    Icon
    Name:
    CARLEY_MS_THESIS_2010.pdf
    Size:
    7.418Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy