• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Secure learning in adversarial environments

    Li, Bo
    : https://etd.library.vanderbilt.edu/etd-07082016-224435
    http://hdl.handle.net/1803/12864
    : 2016-07-14

    Abstract

    Machine learning has become ubiquitous in the modern world, varying from enterprise applications to personal use cases and from image annotation and text recognition to speech captioning and machine translation. Its capabilities in inferring patterns from data have found great success in the domains of prediction and decision making, including in security sensitive applications, such as intrusion detection, virus detection, biometric identity recognition, and spam filtering. However, strengths of such learning systems of traditional machine learning are based on the distributional stationarity assumption, and can become their vulnerabilities when there are adversarial manipulations during the training process (poisoning attack) or the testing process (evasion attack). Considering the fact that the traditional learning strategies are potentially vulnerable to security faults, there is a need for machine learning techniques that are secure against sophisticated adversaries in order to fill the gap between the distributional stationarity assumption and deliberate adversarial manipulations. These techniques will be referred to as secure learning throughout this thesis. To conduct systematic research for this secure learning problem, my study is based on three components. First, I model different kinds of attacks against the learning systems by evaluating the adversaries’ capabilities, goals and cost models. Second, I study the secure learning algorithms that counter any targeted malicious attacks by considering the specific goals of the learners and their resource and capability limitations theoretically. Concretely, I model the interactions between the defender (learning system) and attackers as different forms of games. Based on the game theoretic analysis, I evaluate the utilities and constraints for both participants, as well as optimize the secure learning system with respect to adversarial responses. Third, I design and implement practical algorithms to efficiently defend against multi-adversarial attack strategies. My thesis focuses on examining and answering theoretical questions about the limits of classifier evasion (evasion attack), adversarial contamination (poisoning attack) and privacy preserving problem in adversarial environments, as well as how to design practical resilient learning algorithms for a wide range of applications, including spam filters, malware detection, network intrusion detection, recommendation systems, etc. In my study, I tailor my approaches for building scalable machine learning systems, which are demanded by modern big data applications.
    Show full item record

    Files in this item

    Icon
    Name:
    BoLi.pdf
    Size:
    43.68Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy