• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Exploring New Structural and Functional Space in the Glutathione Transferase Superfamily from Escherichia coli K-12

    Branch, Megan Christine
    : https://etd.library.vanderbilt.edu/etd-07012011-143800
    http://hdl.handle.net/1803/12771
    : 2011-07-07

    Abstract

    Genome sequencing projects have revealed that glutathione (GSH) transferases are widely distributed in bacteria but most remain only as annotations in sequenced genomes. The goal of this project was to assign function to members of the GSH transferase superfamily from Escherichia coli K-12. Several strategies are required for the accurate assignment of function to proteins of unknown function. These approaches include; 1) analysis using informatics and sequence similarity, 2) co-localization of genes providing operon/metabolic context, 3) transcriptional analysis, 4) phenotypic response to gene knockouts, 5) structural biology, 6) and functional assays of the protein. The work described in this report focuses on functional and structural studies of three GSH transferase homologs from E. coli, YfcG, YghU and YqjG. The YghU and YfcG proteins represent a previously unrecognized class of GSH transferases that have unique structural and catalytic properties. These two proteins have a distinct active site and the ability to bind glutathione disulfide (GSSG) with high affinity (YfcG) or two molecules of GSH simultaneously (YghU). The proteins share robust disulfide-bond oxidoreductase and GSH-dependent peroxidase activity. Despite the similarities, YghU and YfcG have significant chemical and structural differences, including their preferred oxidation states and the N-terminal and C-terminal extensions of YghU. YqjG belongs to a unique cluster of GSH transferases that has not been previously characterized. The protein exhibits modest disulfide bond reductase activity and may have glutathionyl-hydroquinone reductase activity with other substrates. The protein adopts a classical GSH transferase fold but a unique splayed dimer. Proteins in this class are primarily from bacteria, although some are from eukaryotes including fungi, and may constitute a novel class of GSH transferases.
    Show full item record

    Files in this item

    Icon
    Name:
    BranchMC_Thesis.pdf
    Size:
    43.99Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy