• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    A Radiation-Reliability Assurance Case using Goal Structuring Notation for a CubeSat Experiment

    Austin, Rebekah Ann
    : https://etd.library.vanderbilt.edu/etd-06302016-120807
    http://hdl.handle.net/1803/12763
    : 2016-07-06

    Abstract

    CubeSats have become an attractive platform for university-based spacecraft designs because they are cheaper and quicker to launch than full-scale satellites. One way of keeping costs for CubeSats low is using commercial off-the-shelf parts (COTS) instead of using space-qualified parts. Space-qualified parts are often costly, larger, and consume more power than their commercial counterparts prohibiting their use within a CubeSat. Given typical power budgets, monetary budgets, and timelines for CubeSat missions, conventional radiation hardness assurance, like the use of hardened parts and radiation testing campaigns of COTS parts, is not possible, requiring a system-level approach to radiation effects mitigation. In this thesis an assurance case for the radiation reliability of a CubeSat experiment is expressed using Goal Structuring Notation (GSN), a graphical argument standard. The case specifically looks at three main mitigation strategies for the radiation environment: total ionizing dose (TID) screening of parts, detection and recovery from single-event latch-ups (SEL) and single-event functional interrupts (SEFI). The graphical assurance case presented makes a qualitative argument for the radiation reliability of the CubeSat experiment using part and system-level mitigation strategies and is supported by functional and system models of the system.
    Show full item record

    Files in this item

    Icon
    Name:
    austin.pdf
    Size:
    2.352Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy