• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Development of a lung cancer prediction model for surgeons and factors affecting its national application

    Deppen, Stephen Andrew
    : https://etd.library.vanderbilt.edu/etd-06062013-113320
    http://hdl.handle.net/1803/12484
    : 2013-08-04

    Abstract

    Lung cancer is deadly, killing more people than breast, colon and prostate cancer combined. Surgeons evaluating patients for lung cancer face a dilemma: to operate and subject the individual to operation associated mortality and morbidity or not operate and possibly miss early diagnosis and treatment. No models designed for surgeons evaluating lung lesions. We successfully estimated the TREAT model. A model designed for surgeons with an internally validated AUC of 0.87 and Brier score of 13. If the TREAT model is applied to a national population, its accuracy may decrease due to local conditions. To determine the possible extent of such variation, benign disease prevalence after lung surgery was estimated using 2009 Medicare hospital discharge data. Significant variation in benign disease prevalence between states was observed with a low of 1.3% in Vermont and a high of 25% in Hawaii. The causes for this observed variation are unknown. Residence in a county with high fungal lung disease prevalence was not associated with increased likelihood of benign disease. FDG-PET scan variance was observed in the national ACOGOS Z4031 trial. FDG-PET sensitivity (82%) and specificity (31%) were significantly lower than in previous published studies. Granuloma occurred in 68% of the false positive FDG-PET scans and sensitivity varied significantly between sites. Scan accuracy increased with increasing lung lesion size. Whether the observed variation is caused by practice variation, referral patterns, fungal lung disease, or other factors is unknown. A meta-analysis examined FDG-PET accuracy to diagnose lung lesions sought to determine if other researchers had observed variance in FDG-PET accuracy. Seven studies reported false positive scans arising from granulomas caused by infectious lung disease. Specificity of those studies was 59%, significantly lower than the specificity (77%) observed in the remaining 53 studies. Studies whose mean lesion size was less than or equal to 20 mm had significantly lower sensitivity than studies conducted in larger lesions. The TREAT model shows clinical promise and should be externally validated. The causes of observed variation in benign disease prevalence and FDG-PET accuracy should be investigated with particular attention made to measuring infectious disease exposures that cause granulomas.
    Show full item record

    Files in this item

    Icon
    Name:
    Deppen.dissertation06062013.pdf
    Size:
    3.951Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy