• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Novel and diverse roles of STRAP in maintenance of mesenchymal morphology and GSK3Beta signaling.

    Kashikar, Nilesh Digvijay
    : https://etd.library.vanderbilt.edu/etd-06042010-154014
    http://hdl.handle.net/1803/12466
    : 2010-06-04

    Abstract

    STRAP inhibits transforming growth factor-Beta (TGF-Beta) signaling and enhances tumorigenicity. The aim of our current research project was to identify novel TGF-Beta independent functions of STRAP. STRAP acts as a scaffold for the assembly of multi-protein complexes and our study has uncovered two novel but independent functions of STRAP. In the first part, we report, for the first time, that deletion of STRAP from Mouse Embryonic Fibroblasts (MEFs) results in a loss of mesenchymal morphology. These cells lose their spindle shape and exhibit cobloid epithelial morphology. Loss of STRAP leads to upregulation of WT1 that subsequently upregulates E-cadherin leading to the formation of adherens junctions, and sequesters Beta-catenin to the cell membrane and downregulation of the mesenchymal markers like LEF1. Finally, stable expression of STRAP in these cells results in a loss of WT1 and E-cadherin expressions, and a reversal from epithelial to the mesenchymal morphology. In the second part, we validated that STRAP binds with GSK3-Beta, an enzyme that plays multiple roles in a cell, including insulin and Wnt signaling. In a completely novel finding, we observed that STRAP, GSK3-Beta and Axin form a ternary complex. We also, for the first time show that intracellular fragment of Notch3 (ICN3) binds with GSK3-Beta, suggesting that Notch3 may be a novel substrate of GSK3-Beta. We show that STRAP binds ICN3 in a proteasomal inhibition-dependent manner. Further studies revealed that STRAP binds ICN3 through the same ankyrin repeat region. In-vivo ubiquitination studies indicate that STRAP is able to reduce ubiquitination of ICN3, raising a possibility that STRAP may stabilize ICN3 leading to a longer half life in the cells. STRAP and Notch3 are both known to be upregulated in lung cancers and we observed that STRAP and ICN3 are co-overexpressed in 59 % of lung cancers in a tissue microarray study. STRAP shows oncogenic activity and our results from the two independent studies provide additional insights into how STRAP may behave as an oncogene using diverse mechanisms.
    Show full item record

    Files in this item

    Icon
    Name:
    Nilesh_Kashikar_Thesis.pdf
    Size:
    2.412Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy