• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Characterizing the role of the Est1 protein in stimulating the recruitment of the Est3 protein to the yeast telomerase complex

    Riddle, Abigail Leigh
    : https://etd.library.vanderbilt.edu/etd-05312012-121631
    http://hdl.handle.net/1803/12435
    : 2012-06-11

    Abstract

    Telomeres are protective protein/DNA complexes that cap the ends of linear chromosomes. The repetitive, TG-rich telomeric sequences are elongated by the telomerase ribonucleoprotein. In Saccharomyces cerevisiae, the catalytic core of telomerase consists of the reverse transcriptase Est2p and the TLC1 RNA, which contains the template for nucleotide addition. The Est1 and Est3 proteins serve regulatory roles in vivo but are dispensable for in vitro telomerase activity. The mechanism through which Est3p assembles with the holoenzyme is debated within the field, specifically concerning Est1p’s role in Est3p recruitment. Based on evidence demonstrating that Est1p is not absolutely required to recruit Est3p, I hypothesize that Est1p stimulates Est3p recruitment. To identify residues of the Est1 protein responsible for this function, I used a combination of in vivo and in vitro experiments and two genetic screens. Using an in vivo assembly assay, I determined that a putative Est3p recruitment domain lies between amino acids 499 and 563 of Est1p and optimized the protocol for analyzing point mutations within this region. Additionally, I have designed two genetic screens to isolate alleles of EST1 specifically disrupted for stimulating Est3p recruitment. The first uses an Est2-Est3 fusion protein predicted to bypass only the Est3p recruitment function of Est1p. The second utilizes a galactose-inducible allele of EST3 to screen for Est1p mutants rescued by over-expression of Est3p. Identification of separation-of-function alleles of EST1 with these tools will clarify the precise mechanisms of yeast telomerase complex assembly and potentially provide insight into the interactions of human telomerase components.
    Show full item record

    Files in this item

    Icon
    Name:
    RiddleMSthesis.pdf
    Size:
    1.740Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy