• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Hyperbolic Structures on groups

    Hassan Balasubramanya, Sahana
    : https://etd.library.vanderbilt.edu/etd-05252018-123711
    http://hdl.handle.net/1803/12391
    : 2018-05-30

    Abstract

    It is customary in geometric group theory to study groups as metric spaces. The standard way to convert a group G into a geometric object is to fix a generating set X and endow the Cayley graph Ga(G,X) with the corresponding word metric. In joint work with Carolyn Abbott and Denis Osin, we introduced the set of hyperbolic structures on G, denoted H(G), which consists of equivalence classes of generating sets of G such that the corresponding Cayley graph is hyperbolic; these are ordered in a natural way according to the amount of information they provide about the group. Of special interest is the subset AH(G) of H(G) of acylindrically hyperbolic structures on G, i.e. hyperbolic structures corresponding to acylindrical actions.The question of accessibility of these posets is studied, and several classes of acylindrically hyperbolic groups are proved to be AH-accessible. By utilizing the notions of hyperbolically embedded subgroups and projection complexes, I then prove that every acylindrically hyperbolic group G has a generating set X such that the corresponding Cayley graph Ga(G,X) is a (non-elementary) quasi-tree and the action of G on Ga(G,X) is acylindrical. As an application, new results about hyperbolically embedded subgroups and quasi-convex subgroups of acylindrically hyperbolic groups are obtained. Lastly, a particular question associated to quasi-parabolic hyperbolic structures is answered . Specifically, many examples of groups with finitely many quasi-parabolic structures are given.
    Show full item record

    Files in this item

    Icon
    Name:
    HassanBalasubramanya_Dissertat ...
    Size:
    552.7Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy