• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Tracing adaptive pathways in a proofreading-deficient coronavirus

    Graepel, Kevin Whittle
    : https://etd.library.vanderbilt.edu/etd-05142019-184613
    http://hdl.handle.net/1803/12309
    : 2019-05-17

    Abstract

    Coronaviruses (CoVs) are a family of positive-sense RNA viruses that cause human illnesses ranging from the common cold to severe and lethal respiratory disease. Since 2002, two CoVs (SARS- and MERS-CoV) have emerged as zoonoses with pandemic potential, and closely-related viruses continue to circulate in animal populations. CoVs are distinguished from other RNA viruses by the complexity of their replication machinery, including the presence of a 3'-5' exoribonuclease (ExoN) within nonstructural protein 14 (nsp14-ExoN). The CoV-nsp14-ExoN is the first and, to date, only proofreading enzyme identified in an RNA virus and mediates high-fidelity replication. ExoN activity is critical for CoV biology, as proofreading-deficient CoVs with disrupted ExoN activity [ExoN(-)] are either nonviable or have significant defects in replication, RNA synthesis, fidelity, and in vivo virulence. Remarkably, despite these fitness costs, ExoN(-) CoVs do not revert the engineered mutations under diverse selective environments. In this dissertation, I use experimental evolution to examine the adaptive landscape of an ExoN(-) CoV, murine hepatitis virus (MHV). I show that the lack of reversion of MHV-ExoN(-) is driven by the limitations and opportunities of the adaptive landscape, which favors compensation over direct reversion. These results reveal a remarkable capacity for MHV to compensate for a disrupted ExoN, support the proposed link between CoV fidelity and fitness, illuminate complex functional and evolutionary relationships between CoV replicase proteins, and identify potential mechanisms for stabilization of attenuated ExoN(-) CoVs. New assays for measuring CoV fidelity and fitness are also discussed.
    Show full item record

    Files in this item

    Icon
    Name:
    Graepel.pdf
    Size:
    29.53Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy