• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Ultra-small rare-earth oxide nanocrystals: development, film assembly, optical and dielectric studies

    Mahajan, Sameer Vinayak
    : https://etd.library.vanderbilt.edu/etd-04162010-161540
    http://hdl.handle.net/1803/12172
    : 2010-04-16

    Abstract

    The oxides of rare-earth elements (rare-earth sesquioxide: RE2O3) are known for their optical and dielectric properties. Europium oxide is known for characteristic red luminescence and gadolinium oxide has excellent insulating properties (band gap: 5.5 eV). Development of ultra-small nanocrystals (sub-3 nm diameter) of these rare-earth oxides and investigation of their optical and dielectric properties are explored in this dissertation. A new synthesis process was developed successfully to produce ultra-small colloidal nanocrystals, which were capped with oleic acid. Europium oxide nanocrystals exhibited a new luminescence peak because of the occupation of Eu3+ ions in a surface site. The nanocrystals were assembled into films from their suspensions in hexane by electrophoretic deposition. Films of europium oxide were highly transparent in visible spectral region because of minimal scattering losses within the films and exhibited characteristic red luminescence. Gadolinium oxide nanocrystals exhibited charge-storage properties when integrated in a metal-insulator-semiconductor structure. Layered heterostructures of carbon nanotubes and nanocrystals were fabricated and their charge-storage properties were studied.
    Show full item record

    Files in this item

    Icon
    Name:
    Sameer-Mahajan-Dissertation.pdf
    Size:
    5.390Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy