• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Multi-Atlas Segmentation through Rater Performance Modeling: Theory and Applications

    Asman, Andrew Joseph
    : https://etd.library.vanderbilt.edu/etd-04152014-115658
    http://hdl.handle.net/1803/12166
    : 2014-04-28

    Abstract

    The ability to generalize information from examples has been the driving force behind decades of statistical modeling and machine learning research. Building on this fundamental concept, this dissertation addresses the ability to generalize structural context, or segmentations, from medical images using labeled examples (i.e., atlases). Specifically, this research focuses on the problem of multi-atlas segmentation in which image correspondences between a set of atlases and the target-of-interest are discovered and the underlying target segmentation is estimated using statistical fusion – a supervised learning approach for resolving label conflicts. Using this general framework, several theoretical advancements to the statistical fusion model are presented, and the results of these contributions are highlighted on clinically and scientifically relevant applications. Herein, for the proposed theoretical contributions, the generative models governing statistical fusion are revisited to simultaneously and optimally account for: (1) spatially varying task difficulty, (2) spatially varying atlas performance, (3) imperfect image correspondence, and (4) hierarchically consistent performance estimation. Next, the benefits of these theoretical advancements are illustrated for: (1) detection of imaging abnormalities and anomalies, (2) segmenting the spinal cord’s internal structure through structural shape and appearance modeling, and (3) removing the need for computationally expensive deformable registration in whole-brain multi-atlas segmentation via machine learning mechanisms.
    Show full item record

    Files in this item

    Icon
    Name:
    Asman-Thesis-Final.pdf
    Size:
    10.48Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy